Back to Course

Basic Private Pilot Ground School

0% Complete
0/0 Steps
  1. Lesson 1: Your First Flight
    6 Topics
    |
    1 Quiz
  2. Lesson 2: Maneuvers and the Traffic Pattern
    6 Topics
    |
    1 Quiz
  3. Lesson 3: Understanding the Wind and Turns
    6 Topics
    |
    1 Quiz
  4. Lesson 4: AOA, Stalls, and Other Scary Things
    5 Topics
    |
    1 Quiz
  5. Lesson 5: Ground Reference, Maneuvers, and FARs
    4 Topics
    |
    1 Quiz
  6. Lesson 6: Building Good Landings
    5 Topics
    |
    1 Quiz
  7. Lesson 7: The Less Busy Airspace: G, E, D
    3 Topics
    |
    1 Quiz
  8. Lesson 8: Class A, B, and C Airspace: The Busier Side of the Sky
    4 Topics
    |
    1 Quiz
  9. Lesson 9: Flying Blind and Performance Calculations
    4 Topics
    |
    1 Quiz
  10. Lesson 10: Soft and Short Field T.O.'s + Landings
    4 Topics
    |
    1 Quiz
  11. Lesson 11: Start Your Engines: Engines, Systems, and Instruments
    6 Topics
    |
    1 Quiz
  12. Lesson 12: Weight and Balance, Navigation Systems
    4 Topics
    |
    1 Quiz
  13. Lesson 13: Luck with Weather
    6 Topics
    |
    1 Quiz
  14. Lesson 14: Your First SOLO!
    2 Topics
    |
    1 Quiz
  15. Lesson 15: VFR Charts and Navigation
    5 Topics
    |
    1 Quiz
  16. Lesson 16: Weather Charts and Services
    6 Topics
    |
    1 Quiz
  17. Lesson 17: Aeromedical Factors, ADM, FARS
    5 Topics
    |
    1 Quiz
  18. Lesson 18: Flying at Night
    3 Topics
    |
    1 Quiz
  19. Lesson 19: Cross Country Flight Planning
    4 Topics
    |
    1 Quiz
  20. Lesson 20: Test Prep
    5 Topics
    |
    2 Quizzes
Lesson Progress
0% Complete

How much can the wing carry?

What we are looking at here is a graph of the load (G loading or G-forces) felt on the aircraft itself (and also felt by you, the pilot) when making LEVEL turns (level turns being holding a constant altitude and not climbing or descending, as we talk about being LEVEL in this TOPIC, what we mean is maintaining the same altitude).  As you increase the bank angle of the airplane, the lift being generated by the wing is no longer just pushing straight down to keep the airplane in the air, this lift is now being directed at an angle which is ultimately what makes your airplane turn.  HORIZONTAL COMPONENT OF LIFT IS WHAT MAKES AIRPLANES TURN.

We can break the total lift being generated by the wing into two separate “vectors” or forces, horizontal component, and the vertical component.  The vertical component is what keeps the airplane flying level, and as a result, THE VERTICAL COMPONENT MUST REMAIN THE SAME to keep the airplane flying level regardless of turning or flying straight.  Now to keep this vertical component the same when we are directing or lift off to the side by banking the airplane, we are going to have to increase our TOTAL LIFT on the wing, which in turn keeps the vertical lift vector constant, and increases the horizontal component of lift (making the airplane turn).  This increase in total lift (total lift in normal straight and level flight is about 1G force) is felt by the pilot and occupants of the aircraft as increased G-forces.

steep turns lift component

 

Ultimatley, the more the wing tilts (banks), the more lift it must generate to keep the airplane in LEVEL flight.  Obviously once the airplane banks to 90 degrees the amount of lift required becomes infinite, since the lift is only being directed sideways and no amount of lift from the wing (or pulling back on the controls by the pilot) could keep the airplane level.

If you want a few reference points, you should remember the load factor or G-forces in a 45 DEGREE BANK TURN ARE 1.4G’s AND THE LOAD FACTOR IN A 60 DEGREE BANK TURN IS 2 G-FORCES.

Enjoying the Free Course?


Get even more value by getting the latest news related to Aviation and discounts on our premium packages.

Enjoying the Free Course?


Get even more value by getting the latest news related to Aviation and discounts on our premium packages.